
ECE 174 Sample Midterm Question Solutions

1. The definitions can be found in the lecture notes and textbook. Note that this list is
not exhaustive and other definitions can also be asked for on the exam (such as the
definitions of field; onto; one-to-one; rank; etc.).

2. Geometry of Least Squares and the Projection Theorem.

(a) Domain = X = Cn. Codomain = Y = Cm. Geometry induced by A is Y =
R(A)⊕N (A∗), where N (A∗) = R(A)⊥, and X = R(A∗)⊕N (A), where R(A∗) =
N (A)⊥. A∗ is the adjoint operator of A. DimR(A) = r = rank(A), dimN (A∗) =
m− r, dimR(A∗) = r, dimN (A) = ν = n− r.

(b) (i) A has rank m (A is onto). (ii) A has rank n (A is one-to-one). (iii) Either
b 6= R(A), in which case no solution exists, or b ∈ R(A), in which case an infinity
of solution exists.

(c) (i) The solution, x̂, is such that (b − Ax̂) ⊥ R(A). (ii) (b − Ax̂) ∈ R(A)⊥ =
N (A∗) ⇒ A∗(b − Ax̂) = 0 ⇒ A∗Ax̂ = A∗b. A unique optimal solution exists
because A is full column rank (r = n) so that the null space of A is trivial,
N (A) = {0}. In this case (A∗A) is invertible and the normal equations can
be solved explicitly as x̂ = (A∗A)−1A∗b. Note that we have shown that A+ =
(A∗A)−1A∗ when A is one-to-one (A has rank n).

(d) (i) In order to insure that the solution, x̂, is the unique minimum norm solution
we require x̂ ⊥ N (A) to ensure that x̂ has no component in the nullspace of A.
(ii) x̂ ∈ N (A)⊥ = R(A∗) ⇒ x̂ = A∗λ for some λ ∈ Y ⇒ AA∗λ = b (from Ax = b)
⇒ λ = (AA∗)−1b (since (AA∗) is invertible) ⇒ x = A∗λ = A∗(AA∗)−1b. Note
that we have shown that A+ = A∗(AA∗)−1 when A in onto (A has rank m).

(e) (i) and (ii) has been shown above. (iii) Here A is assumed to be square and full
rank (r = n = m), and hence invertible. Furthermore A∗ must also be square
and full rank (since r(A∗) = r(A)) and is therefore also invertible. We have for
case (i) that A+ = (A∗A)−1A∗ = A−1(A∗)−1A∗ = A−1, and for case (ii) that
A+ = A∗(AA∗)−1 = A∗(A∗)−1A−1 = A−1.

3. Operator Adjoints and Quadratic Optimization.

(a) Using the definition of the adjoint, first one determines that A∗ = AHW . Then,
using the form of the pseudoinverse derived above for the one-to-one case, one
obtains A+ = (AHWA)−1AHW .

(b) Using the definition of the adjoint, first one determines that A∗ = Ω−1AH . Then,
using the form of the pseudoinverse derived above for the onto case, one obtains
A+ = Ω−1AH(AΩ−1AH)−1.
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4. Simple Applications.

(a) We have yi = sxi, i = 1, · · · , m, where s is the unknown slope. We can restate
this in vector-matrix form as y = xs. Note that x viewed as a m × 1 matrix
operator is one-to-one and that its adjoint is given by x∗ = xT (assuming the
standard unweighted inner product on R2). The least squares estimate for s is
then given by

x̂ = (xT x)−1xT y =

∑m
i=1 xiyi∑m
i=1 x2

i

.

(b) Because of Ohm’s Law, Vi = IiRi, i = 1, 2, 3, we can take as the definition of
the input space (domain) either the set of possible values of the three resistor
voltages or of the three resistor currents. Here, we choose the latter case. Taking
x = (I1, I2, I3)

T and y = I, we obtain the constraint condition y = Ax, with
A = (1, 1, 1). A is obviously onto, so the choice of inner product in the output
space (codomain) is irrelevant. Therefore use the simple scalar product as the
inner product. For the input space (domain), the choice of inner product weighting
is determined from the power dissipation formula (“Joule’s Law”, Pi = IiVi) and
Ohm’s law to be Ω = diag(R1, R2, R3). Using the form of the pseudoinverse
appropriate for this case derived in problem 2b above, we obtain,

x̂ =
1

AΩ−1AT
Ω−1AT y .

This is equivalent to,

I1 =
R2R3 I

R2R3 + R1R3 + R1R2

,

I2 =
R1R3 I

R2R3 + R1R3 + R1R2

I3 =
R1R2 I

R2R3 + R1R3 + R1R2

.

Note that the currents sum to I as required. To obtain the optimal voltages, we
use Ohm’s Law, Vi = IiRi, i = 1, 2, 3, yielding,

V1 = V2 = V3 =
R1R2R3 I

R2R3 + R1R3 + R1R2

.

Call this voltage V . The optimal (minimal) power dissipation is given by,

Popt = I1V1 + I2V2 + I3V3 = (I1 + I2 + I3)V = IV =
R1R2R3 I2

R2R3 + R1R3 + R1R2

.

Note that when all resistors have the same value R then Popt = 1
3
RI2, which is

1
3

the value of the power dissipation which would occur if only a simple resistor
is used in the circuit.
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(c) We want to minimize
√

x2 + y2 subject to the linear constraint y − ax = b. Let
z = (x, y)T . Then the problem can be recast as minimize ‖z‖ subject to Az = b
where A = (−a, 1) is onto. Assuming the standard inner product, the adjoint of
A is just AT and we obtain the optimal z as

ẑ =
AT b

AAT
=

b

1 + a2

(−a

1

)
.

This yields the minimum distance of ‖ẑ‖ = |b|√
1+a2 .

(d) In order to fit the abstract data, we want to find the parameters x = (α, β)2 ∈ R2

which will allow the model to best “explain” I in the least-squares sense. The
inverse problem to be solve is,

y =




I1
...

Im


 =




1 V 3
1

...
...

1 V 3
m




(
α
β

)
= Ax .

Note that A has full column rank provided that m ≥ 2. Assuming the standard
inner product, the least-squares solution is given by,

x̂ =

(
α̂

β̂

)
= (AT A)−1AT y = · · · =

(
1 〈V 3〉

〈V 3〉 〈V 6〉
)−1 ( 〈I〉

〈IV 3〉
)

,

where the indicated sample averages are given by 〈V 〉 = 1
m

m∑
k=1

Vk, 〈V 3〉 = 1
m

m∑
k=1

V 3
k ,

〈V 6〉 = 1
m

m∑
k=1

V 6
k , 〈I〉 = 1

m

m∑
k=1

Ik, and 〈IV 3〉 = 1
m

m∑
k=1

IkV
3
k . Using the fact that

(
a b
b c

)−1

=
1

ac− b2

(
c −b
−b a

)

we obtain

α̂ =
〈I〉 〈V 6〉 − 〈IV 3〉 〈V 3〉

〈V 6〉 − 〈V 3〉2 ,

and

β̂ =
〈IV 3〉 − 〈I〉 〈V 3〉
〈V 6〉 − 〈V 3〉2 .

As a check, note that if the model is perfectly correct, so that I = α0 +β0V
3 with

no modelling error for the specific parameter values α0 and β0, then the above
formulas will yield α̂ = α0 and β̂ = β0.
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1Using the facts that 〈I〉 = α0 + β0

〈
V 3

〉
,
〈
IV 3

〉
= α0

〈
V 3

〉
+ β0

〈
V 6

〉
, et cetera.
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